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When applying any technique of multidimensional models to problems of practice, one

always has to cope with two problems: the necessity to represent the models with a "rea-

sonable" number of parameters and to have sufficiently efficient computational procedures

at one’s disposal. When considering graphical Markov models in probability theory, both of

these conditions are fulfilled; various computational procedures for decomposable models

are based on the ideas of local computations, whose theoretical foundations were laid by

Lauritzen and Spiegelhalter.

The presented contribution studies a possibility of transferring these ideas from prob-

ability theory into Dempster–Shafer theory of evidence. The paper recalls decomposable

models, discusses connection of themodel structure with the corresponding system of con-

ditional independence relations, and shows that under special additional conditions, one

can locally compute specific basic assignments which can be considered to be conditional.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Dempster–Shafer theory of evidence [6,21] generalises classical probability theory in such a way that one can easily

describe not only uncertainty but also ignorance. Unfortunately, its disadvantage stems from the fact that belief functions

cannot be represented by a point function (like density function in probability theory); instead, one has to manipulate

with set functions, which leads to an exponential increase of algorithmic complexity for all the necessary computational

procedures.

With regard to probability theory, a substantial decrease of computational complexity was achieved with the help of

Graphical Markov Models (GMM), a technique developed in the last quarter of the last century. Here we specifically have in

mind a technique based on local computations for which the theoretical backgroundwas laid by Lauritzen and Spiegelhalter

[19]. Its basic idea can be expressed in a few words: a multidimensional distribution represented by a Bayesian network is

first converted into a decomposable model, which allows for efficient computation of conditional probabilities.

By properly studying probabilistic GMM one can realise that it is a notion of conditional independence (which is closely

connected with a notion of factorisation) that makes it possible to represent multidimensional probability distributions

efficiently. A goal of this paper is to present a brief survey summarising results concerning decomposable models within

Dempster–Shafer theory of evidence presented in [12–14]. In addition to this we will show that, even in Dempster–Shafer

theory, one can employ the basic ideas of Lauritzen and Spiegelhalter and compute “conditional” basic assignments locally.

The quotationmarks in the preceding sentence express the fact that wewill consider a very special way of conditioning that

can be expressed in the form of a compositional model.

In the rest of this sectionwe introduce necessary notation aswell as an operator of compositionwhich plays a crucial role

in this paper. Section 2 is devoted to a new property of the operator of composition without which we would not be able to

design local computational procedures in Section 5. Section 3 explains the relation between factorisation and the concept

of conditional independence (which is different from the one used bymost of other authors like Ben Yaglan [3], Shenoy [22]
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Fig. 1. A set that is not a joint of its projections.

and others), and the above-mentioned survey concerning graphical models is in Section 4. So, most of the assertions from

Sections 1, 3, 4 were proved previously and this is why they are presented here without proofs.

1.1. Notation

In this paper we consider a finite multidimensional space XN = X1 × X2 × · · · × Xn, and its subspaces (for all K ⊆ N)

XK =×i∈KXi.

For a point x = (x1, x2, . . . , xn) ∈ XN its projection into subspace XK is denoted x↓K = (xi)i∈K , and for A ⊆ XN

A↓K = {y ∈ XK : ∃x ∈ A, x↓K = y}.
By a join of two sets A ⊆ XK and B ⊆ XL we understand a set

A �� B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.
Let us note that if K and L are disjoint, then A �� B = A × B, if K = L then A �� B = A ∩ B.

From the perspective of this paper it is important to realise that if x ∈ C ⊆ XK∪L , then x↓K ∈ C↓K and x↓L ∈ C↓L ,

which means that always C ⊆ C↓K �� C↓L . However, it does not mean that C = C↓K �� C↓L . For example, considering

two-dimensional frame of discernment X{1,2} with Xi = {ai, āi} for both i = 1, 2, and C = {(a1, a2), (ā1, a2), (a1, ā2)},
one gets

C↓{1} �� C↓{2} = {a1, ā1} �� {a2, ā2} = {(a1, a2), (ā1, a2), (a1, ā2), (ā1, ā2)} � C

(see Fig. 1).

1.2. Basic assignments

The role played by a probability distribution in probability theory is in Dempster–Shafer theory played by any of the

following set functions: belief function, plausibility function, basic (probability or belief ) assignment, or commonality func-

tion. Knowing one of them, one can derive all the remaining ones. In this paper we will use almost exclusively basic

assignments.

A basic assignment m on XK (K ⊆ N) is a function

m : P(XK) −→ [0, 1],
for which∑

∅�=A⊆XK

m(A) = 1.

If m(A) > 0, then A is said to be a focal element of m. Recall that

Bel(A) = ∑
∅�=B⊆A

m(B), Pl(A) = ∑
B⊆XK :B∩A �=∅

m(B),

and the respective commonality function is

Q(A) = ∑
B⊇A

m(B).
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Having a basic assignment m on XK one can compute its marginal assignment on XL (for L ⊆ K), which is defined (for

each ∅ �= B ⊆ XL):

m↓L(B) = ∑
A⊆XK :A↓L=B

m(A).

1.3. Operator of composition

Compositional models were introduced for probability theory in [10] as an alternative to Bayesian networks for efficient

representation ofmultidimensional measures. Theywere based on recurrent application of an operator of composition. This

operator is defined for probabilitymeasuresπ and κ onXK andXL , respectively, if themarginal measureπ↓K∩L is absolutely

continuous with respect to κ↓K∩L , for each x ∈ XL∪K by the formula

(π � κ)(x) = π(x↓K)κ(x↓L)

κ↓K∩L(x↓K∩L)

(for the precise definition and its properties see [10]). In fact, the operator of composition realises an old Perez’ idea [20]:

For a probability measure π(x, y, z)

π(x, y, z) = π(x, y) · π(z|x, y)
always holds true. It means that if there is not a strong conditional dependence between x and z given y, then one can

consider probability measure

π̂(x, y, z) = π(x, y) · π(z|y)
as an approximation of measure π . The advantage of this approximation is that it can easily be reconstructed from two

two-dimensionalmarginalsofπ .Onecan immediately see that formeasure π̂ , variablesx and z areconditionally independent

given y. Therefore, Perez called this type of approximation dependence structure simplification.

Based on this idea, an analogous operator within the framework of Dempster–Shafer theory was introduced in [17].

Definition 1 (Operator of composition). For two arbitrary basic assignments m1 on XK and m2 on XL (K �= ∅ �= L), a

composition m1 � m2 is defined for each C ⊆ XK∪L by one of the following expressions:

[a] if m
↓K∩L
2 (C↓K∩L) > 0 and C = C↓K �� C↓L then

(m1 � m2)(C) = m1(C
↓K) · m2(C

↓L)

m
↓K∩L
2 (C↓K∩L)

[b] if m
↓K∩L
2 (C↓K∩L) = 0 and C = C↓K × XL\K then

(m1 � m2)(C) = m1(C
↓K);

[c] in all other cases (m1 � m2)(C) = 0.

Remark 1. The reader may have noticed that for C meeting the condition from case [a] (Definition 1), this definition copies

the idea of probabilistic composition. Case [b] covers situations when there would appear a positive number divided by

zero in the formula from case [a]. In such a situation, the probabilistic operator of composition remains undefined. These

are the very situations when basic assignments m1 and m2 are in conflict and therefore the whole mass of m1 is assigned

to the respective least informative subset of XK∪L , i.e., to C↓K × XL\K . Eventually, case [c] from Definition 1 guarantees

that no set C �= C↓K �� C↓L is assigned a positive mass which would otherwise introduce an undesirable (conditional)

dependence.

Remark 2. It is, perhaps, also necessary to stress that the operator of composition is something other than the famous

Dempster’s rule of combination [6], or its non-normalised version, the so called conjunctive combination rule [2]

(m1 ∩© m2)(C) = ∑
A⊆XK ,B⊆XL:A��B=C

m1(A) · m2(B).
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For example, the operation of composition is (in contrast with the above-mentioned conjunctive combination rule) neither

commutative nor associative (see below). While Dempster’s rule of combination was designed to combine different (inde-

pendent) sources of information (it realises fusion of sources), the operator of composition primarily serves for composing

pieces of local information (usually coming from one source) into a global model. The notion of composition is therefore

closely connected with the notion of factorisation. This fact manifests itself also in the following difference: While for com-

putation of (m1 � m2)(C) it is enough to know only m1 and m2 just for the respective projections of set C, computing

(m1 ∩© m2)(C) requires knowledge of, roughly speaking, the entire basic assignments m1 and m2.

For further intuitive justification of the operator of composition the reader is referred to [17]. For its interpretationwithin

the framework of valuation-based systems see [15]. In view of the forthcoming text, the following assertion from [17] is the

most important.

Proposition 1 (Basic properties). Let m1 and m2 be basic assignments defined on XK ,XL, respectively. Then:

1. m1 � m2 is a basic assignment on XK∪L;

2. (m1 � m2)
↓K = m1;

3. m1 � m2 = m2 � m1 ⇐⇒ m
↓K∩L
1 = m

↓K∩L
2 .

The reader probably noticed that property 2 guarantees idempotency of the operator and gives a hint about how to get

a counterexample to its commutativity (just consider two basic assignments for which m
↓K∩L
1 �= m

↓K∩L
2 ). From point 1,

one immediately gets that for basic assignments m1,m2, . . . ,mr defined on XK1 ,XK2 , . . . ,XKr , respectively, the formula

m1 � m2 � · · · � mr defines a (possibly multidimensional) basic assignment defined on XK1∪···∪Kr . Moreover, in contrast to

probabilistic case, in D-S theory this composed multidimensional basic assignments is always defined – this is ensured by

case [b] of Definition 1.

Example: Consider two basic assignmentsm1,m2 on X{1,2},X{2,3}, respectively, where again each Xi = {a,āi}. For the sake

of simplicity, assume that each of them has only two focal elements, namely: m1({(a1, a2)}) = 0.5,m1({(ā1, ā2)}) = 0.5
andm2({(a2, a3)}) = 0.6,m2({(a2, ā3)}) = 0.4. When computingm1 �m2, one should realise that although there are 255

nonempty subsets C ofX{1,2,3}, only 99 of them are such that C = C↓{1,2} �� C↓{2,3}, and Definition 1 assigns positive values

only to three of them (case [a] is used twice and case [b] once):

[a] (m1 � m2)({(a1, a2, a3)}) = m1({(a1,a2)})·m2({(a2,a3)})
m

↓{2}
2 ({(a2)})

= 0.5·0.6
1

= 0.3,

[a] (m1 � m2)({(a1, a2, ā3)}) = m1({(a1,a2)})·m2({(a2,ā3)})
m

↓{2}
2 ({(a2)})

= 0.5·0.4
1

= 0.2,

[b] (m1 � m2)({(ā1, ā2, a3), (ā1, ā2, ā3)}) = m1({(ā1, ā2)}) = 0.5.

2. Controlled associativity

As alreadymentioned above, the operator of composition is not associative. This means that in fact we do not knowwhat

the formula m1 � m2 � · · · � mr means. To avoid the necessity of using too many parentheses, let us make the following

convention. In the formulae like m1 � m2 � · · · � mr , when the order of application of the operators of composition is not

controlled by parentheses, the operators will be applied from left to right, i.e.,

m1 � m2 � · · · � mr = (· · · (m1 � m2) � · · · � mr−1) � mr .

When designing a process of local computations for compositional models in D-S theory (which is intended to be an

analogy to theprocess proposedby Lauritzen andSpiegelhalter in [19]),wehave to realisewhywe transfer Bayesiannetworks

into decomposable models. What does make computations in decomposable models easier? The answer is straightforward.

Computational procedures have to go through a Bayesian network from source to terminal nodes (parentsmust be processed

before their children). In contrast to this, decomposablemodels canbe reordered so thatonecanalways startwithanarbitrary

node and the respective computational procedures take this advantage and change the orderings of computations. So it is not

surprising thatwewill need a type of associativity in order to design an efficient computational procedure for compositional

models. Surprisingly enough, the following weak form of associativity, which is the main theoretical achievement of this

paper, will be sufficient.

Proposition 2 (Controlled associativity). Let m1,m2 and m3 be basic assignments on XK1 ,XK2 and XK3 , respectively, such that

K2 ⊇ K1 ∩ K3. If all focal elements of m
↓K1∩K2
1 are also focal elements of m

↓K1∩K2
2 , i.e.,

m
↓K1∩K2
1 (C↓K1∩K2) > 0 �⇒ m

↓K1∩K2
2 (C↓K1∩K2) > 0,
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then

(m1 � m2) � m3 = m1 � (m2 � m3) .

Proof. The goal is to prove that for any C ⊆ XK1∪K2∪K3

((m1 � m2) � m3)(C) = (m1 � (m2 � m3))(C). (1)

We have to distinguish five special cases.

A. C �= C↓K1 �� C↓K2 �� C↓K3 .

This is the simplest situation because, due to associativity of join,

(C↓K1 �� C↓K2) �� C↓K3 = C↓K1 �� (C↓K2 �� C↓K3)

and therefore in this case both sides of formula (1) equal 0, which follows from Definition 1 (case [c]).

B. C = C↓K1 �� C↓K2 �� C↓K3 and m
↓K1∩K2
2 (C↓K1∩K2) > 0, m

↓K2∩K3
3 (C↓K2∩K3) > 0.

In this case, under the given assumptions,

K3 ∩ (K1 ∪ K2) = K3 ∩ K2

and therefore

((m1 � m2) � m3)(C) = m1(C
↓K1) · m2(C

↓K2)

m
↓K2∩K1
2 (C↓K2∩K1)

· m3(C
↓K3)

m
↓K3∩K2
3 (C↓K3∩K2)

.

Analogously, we canmake the following computations (in the last modification we use the fact that in the considered

case K1 ∩ K2 ∩ K3 = K1 ∩ K3):

(m1 � (m2 � m3))(C) = m1(C
↓K1) · (m2 � m3)(C

↓K2∪K3)

(m2 � m3)↓K1∩(K2∪K3)(C↓K1∩(K2∪K3))

= m1(C
↓K1)

(m2 � m3)↓K1∩(K2∪K3)(C↓K1∩(K2∪K3))
· m2(C

↓K2) · m3(C
↓K3)

m
↓K2∩K3
3 (C↓K2∩K3)

= m1(C
↓K1) · m↓K1∩K2∩K3

3 (C↓K1∩K2∩K3)

m
↓K1∩K2
2 (C↓K1∩K2) · m↓K1∩K3

3 (C↓K1∩K3)
· m2(C

↓K2) · m3(C
↓K3)

m
↓K2∩K3
3 (C↓K2∩K3)

= m1(C
↓K1) · m2(C

↓K2) · m3(C
↓K3)

m
↓K1∩K2
2 (C↓K1∩K2) · m↓K2∩K3

3 (C↓K2∩K3)
,

which proves that the equality (1) holds.

C. C = C↓K1 �� C↓K2 �� C↓K3 and m
↓K1∩K2
2 (C↓K1∩K2) > 0, m

↓K2∩K3
3 (C↓K2∩K3) = 0.

In this case, if C↓K3\K2 �= XK3\K2 then both sides of formula (1) equal 0. This is because, due to Definition 1, both

composed assignments (m1 � m2) � m3 andm2 � m3 equal 0 for this C, and therefore also (m1 � (m2 � m3))(C) = 0.

Therefore, consider C = C↓K1 �� C↓K2 �� XK3\K2 . For this we get from Definition 1

((m1 � m2) � m3)(C) = (m1 � m2)(C
↓K1∪K2).

For the right-hand side of formula (1) we get

(m2 � m3)(C
↓K2∪K3) = m2(C

↓K2)

and therefore

(m1 � (m2 � m3))(C) = (m1 � m2)(C
↓K1∪K2).

D. C = C↓K1 �� C↓K2 �� C↓K3 and m
↓K1∩K2
2 (C↓K1∩K2) = 0, m

↓K2∩K3
3 (C↓K2∩K3) > 0.

Since we assume that m
↓K1∩K2
1 (C↓K1∩K2) > 0 implies m

↓K1∩K2
2 (C↓K1∩K2) > 0, we know that for the considered C,

m
↓K1∩K2
1 (C↓K1∩K2) = 0, and therefore both sides of formula (1) equal 0 becausem1 is marginal to both (m1 �m2)�m3

andm1 � (m2 � m3).
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Table 1

Composed basic assignment (m1 � m2) � m3.

Focal elements (m1 � m2) � m3

{(a1, a2)} 1
3

{(a1, ā2)} 1
3

{(a1, a2), (a1, ā2)} 1
3

Table 2

Composed basic assignment m2 � m3.

Focal elements m2 � m3

{(ā1, a2)} 1
3

{(ā1, ā2)} 1
3

{(ā1, a2), (ā1, ā2)} 1
3

E. C = C↓K1 �� C↓K2 �� C↓K3 and m
↓K1∩K2
2 (C↓K1∩K2) = 0, m

↓K2∩K3
3 (C↓K2∩K3) = 0.

It is obvious from Definition 1 that both sides of formula (1) equal 0 for all C but for C = C↓K1 �� XK2\K1 �� XK3\K1 .
For this special case, however,

((m1 � m2) � m3)(C) = m1(C
↓K1),

(m1 � (m2 � m3))(C) = m1(C
↓K1). �

Example: Let us illustrate the necessity of the assumption

m
↓K1∩K2
1 (C↓K1∩K2) > 0 �⇒ m

↓K1∩K2
2 (C↓K1∩K2) > 0

required in Lemma 2 by (for the sake of simplicity a rather degenerated) example. Consider three basic assignmentsm1,m2

and m3. Assume that in this case K1 = K2 = {1} and K3 = {1, 2}, Xi = {ai, āi} for both i = 1, 2. Define m1({a1}) = 1 and

m2({ā1}) = 1, which means that both m1,m2 have only one focal element, and m3(A) = 1
15

for all nonempty subsets of

X1 × X2.

For these basic assignmentswe immediately getm1 = m1�m2 (when applying Definition 1, one has to take C↓K1 ×X∅ =
C↓K1 ), and therefore one gets m1 � m2 � m3 as indicated in Table 1. Analogously, one gets m2 � m3 which is depicted in

Table 2. Computing now the basic assignmentm1 � (m2 � m3), one gets a basic assignment with only one focal element

(m1 � (m2 � m3))({a1} × X2) = 1.

Thus we have shown that in this case

(m1 � m2) � m3 �= m1 � (m2 � m3) .

3. Independence and factorisation

What makes the representation and local computations with multidimensional probability distributions feasible is the

property of factorisation [19], which is closely connected with the notion of (conditional) independence. Already in their

seminal papers Dempster [6] andWalley and Fine [27] considered a type of independence that holds for variables X1 and X2

with respect to basic assignment m on X{1,2} = X1 × X2 if for all A ⊆ X{1,2}

m(A) =
{
m↓{1}(A↓{1}) · m↓{2}(A↓{2}) if A = A↓{1} × A↓{2},
0 otherwise.

This formula inspired us to introduce the following notion of factorisation in Dempster–Shafer theory of evidence [12].

Definition 2 (Simple factorisation). Letm be a basic assignment on XK∪L (K, L nonempty). We say that basic assignmentm

factorises with respect to the couple (K, L) if there exist two nonnegative set functions

φ : P(XK) −→ [0,+∞), ψ : P(XL) −→ [0,+∞),

such that for all A ⊆ XK∪L

m(A) =
⎧⎪⎨
⎪⎩
φ(A↓K) · ψ(A↓L) if A = A↓K �� A↓L,

0 otherwise.
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Example: Consider X{1,2,3} = X1 × X2 × X3 with all three Xi = {ai, āi} as in the preceding examples, and consider basic

assignment m factorising with respect to the couple ({1, 2}, {2, 3}). This means that it can be represented with the help of

two functions

φ : P(X{1,2}) → [0,+∞), ψ : P(X{2,3}) → [0,+∞).

SincebothsubspacesX{1,2} andX{2,3} have15nonemptysubsets, eachof these functions isdefinedwith thehelpofmaximally

15 numbers, which means that the considered basic assignment can be represented with 30 parameters. Generally, a basic

assignmentonX{1,2,3} canhaveupto255 focal elements, and thenumberof setsA ⊆ X{1,2,3} forwhichA �= A↓{1,2} �� A↓{2,3}
is 156.

Remark 3. Notice that the importance of the factorisation does not follow only from the fact that the basic assignment m

in the preceding example can be represented by two functions φ andψ , i.e., with 30 parameters, but also from the fact that

the valuem(A) can be computed just from two values: φ(A↓{1,2}) andψ(A↓{2,3}). Valuem(A) does not depend on values of

functionsφ andψ in other points of their domains of definition. This is important because if we considered basic assignment

m on X{1,2,3} that factorises in the sense of the conjunctive combination rule (or Dempster’s rule of combination), i.e., there

exist basic assignments m1 andm2 on X{1,2} and X{2,3}, respectively, such that

m = m1 ∩© m2,

then to compute the valuem(A) one has to know values ofm1 andm2 for all supersets of the respective projections of set A.

In probability theory, the notion of factorisation is closely connected with the notion of conditional independence. The

same holds in Dempster–Shafer theory under the assumption that one accepts the notion of conditional independence as it

appears in the following Definition 3, introduced originally in [16]. Nevertheless, let us first repeat some intuitive reasoning

published in [16] that led us to this definition.

There are at least three ways to introduce a generally accepted concept of unconditional (some authors call it marginal)

independence (non-interactivity) for two disjoint groups of variables XK and XL . Here we will mention two of them, neither

of which requires Dempster’s rule of combination. The one used for example by Ben Yaghlane et al. [2], Shenoy [22] and

Studený [25] is based on the properties of a commonality function. According to this definition, we say that disjoint groups

of variables XK and XL are (unconditionally) independent with respect to basic assignment m if

Q↓K∪L(A) = Q↓K(A↓K) · Q↓L(A↓L)

for any A ⊆ XK∪L . The other (equivalent) definition, which was alreadymentioned at the beginning of this section, says that

XK and XL are independent if for all A ⊆ XK∪L for which A = A↓K × A↓L

m↓K∪L(A) = m↓K(A↓K) · m↓L(A↓L),

andm↓K∪L(A) = 0 for all the remaining A ⊆ XK∪L for which A �= A↓K × A↓L . Both of these definitions invite generalisation

for the case of overlapping groups of variables. Both of them satisfy the so-called semigraphoid properties, both of them are

generalisations of the probabilistic notion of conditional independence (i.e., for Bayesian basic assignments they coincide),

andyet these generalisationsdonot coincide in general. As it is discussed in [3], Studený showed that thegeneralisationbased

on the commonality functions is not consistent with marginalisation. By this he means that there exist basic assignments

m1 and m2 on X{1,2} and X{2,3}, respectively, for which there exist their common extensions m on X{1,2,3} (m↓{1,2} = m1,

m↓{2,3} = m2), but for none of these extensions X1 and X3 are conditionally independent given X2 (for an example the

reader is referred to [3]). And this is one of the reasons whywe prefer the following definition. Another reason is that for the

concept of conditional independence from Definition 3, one can prove the Factorisation Lemma - see Proposition 3 below.

Definition 3 (Conditional independence). Letm be a basic assignment onXN andK, L,M ⊂ N be disjoint, bothK, L �= ∅.We

say that groups of variables XK and XL are conditionally independent given XM with respect to m (and denote it by K⊥⊥L|M [m]),
if for any A ⊆ XK∪L∪M such that A = A↓K∪M �� A↓L∪M the equality

m↓K∪L∪M(A) · m↓M(A↓M) = m↓K∪M(A↓K∪M) · m↓L∪M(A↓L∪M)

holds true, and m↓K∪L∪M(A) = 0 for all the remaining A ⊆ XK∪L∪M , for which A �= A↓K∪M �� A↓L∪M .

Remark 4. As already mentioned above, it was shown in [11] that this definition meets all the semigraphoid axioms [24]

and that forM = ∅ it reduces to the generally accepted definition of (unconditional) independence (see, e.g., [2]).

Important relationships between this type of conditional independence and factorisation (operator of composition) are

presented in the following two assertions proved in [26] and [17], respectively.
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Proposition 3 (Factorisation lemma). Let K, L be nonempty. m↓K∪L factorises with respect to the couple (K, L) if and only if

K \ L⊥⊥L \ K | K ∩ L [m].
Proposition 4 (Factorisation of composition). Let K, L be nonempty. m↓K∪L factorises with respect to the couple (K, L) if and
only if

m↓K∪L = m↓K � m↓L.

Remark 5. It may be interesting to realise that when computingm↓K � m↓L , no positive value (m↓K � m↓L)(C) is assigned
by application of the expression [b] of Definition 1. Namely, this expression is applied only when one composes basic

assignmentswhichare inconflict,whichcannothappenwhencomposingmarginalsof amore-dimensionalbasicassignment.

4. Graphical models

4.1. Belief networks

In this sectionwe introduceaDempster–Shafer counterpart toBayesiannetworks. It iswell-knownthatBayesiannetworks

canbedefined in probability theory in several differentways. Herewewill proceed according to a rather theoretical approach

which defines a Bayesian network as a probability distribution factorisingwith respect to a given acyclic directed graph (DAG).

The factorisation guarantees that the independence structure of a probability distribution represented by a Bayesian network

is in harmony with the so called d-separation criterion [9,18].

The factorisation principle can be formulated in the following way (here pa(i) denotes the set of parents of a node i

of the considered DAG, and fam(i) = pa(i) ∪ {i}): measure π is a Bayesian network with a DAG G = (N, E) if for each

i = 2, . . . , |N| (assuming that the ordering 1, 2, . . . , |N| is such that k ∈ pa(j) �⇒ k < j) marginal distributionπ↓{1,2,...,i}
factorises with respect to couple ({1, 2, . . . , i − 1}, fam(i)). And this is the definition which can be directly taken over into

Dempster–Shafer theory.

Definition 4 (Belief network). We say that a basic assignment m is a belief network (BN) with a DAG G = (N, E) if for each
i = 2, . . . , |N| (assuming the enumeration meets the property that k ∈ pa(j) �⇒ k < j), marginal basic assignment

m↓{1,...,i} factorises with respect to the couple ({1, . . . , i − 1}, fam(i)).
From this definition, which differs from those used in [7,23], we get the following description of a BN.

Proposition 5 (Closed form for BN). Let G = (N, E) be a DAG, and 1, 2, . . . , |N| be its nodes ordered in the way that parents

are before their children. Basic assignment m is a BN with graph G if and only if

m = m↓fam(1) � m↓fam(2) � · · · � m↓fam(|N|).

Proof. Let us employ mathematical induction. For |N| = 1 (fam(1) = {1}) the assertion is trivial, so we will perform the

inductive step, which is nothing other than application of Proposition 4: Marginal basic assignment m↓{1,2,...,i} factorises

with respect to couple ({1, 2, . . . , i − 1}, fam(i)), and therefore

m↓{1,2,...,i} = m↓{1,2,...,i−1} � m↓fami = (m↓fam(1) � · · · � m↓fam(i−1)) � m↓fam(i). �
Example: With respect to Proposition 5, basic assignment m is a BN with the graph from Fig. 2(a) if

m = m↓{1} � m↓{2} � m↓{2,3} � m↓{1,2,4} � m↓{4,5} � m↓{3,5,6},

because the ordering of nodes 1, 2, 3, 4, 5, 6 is such that parents are before their children. However, it is not the only

ordering meeting this condition. Since, say, the ordering 2, 3, 1, 4, 5, 6 also fulfils this condition, the basic assignment m

can equivalently be expressed in the form of the following compositional model:

m = m↓{2} � m↓{2,3} � m↓{1} � m↓{1,2,4} � m↓{4,5} � m↓{3,5,6}.

4.2. Factorisation with respect to decomposable graphs

In classical papers on probabilistic models like that by Daroch, Lauritzen and Speed [5], or Edwards and Havránek [8],

graphicalmodelswere defined as probability distributions (measures) factorisingwith respect to a systemof subsets forming

cliquesof agraph. For the sakeof thispaperwewill justdefinea subclassof graphicalmodels, so-calleddecomposablemodels,

which factorisewith respect to decomposable graphs, i.e., with respect to the graphswhose cliques K1, K2, . . . , Kr (maximal
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Fig. 2. (a) DAG and (b) decomposable graph.

complete subsets of nodes) can be ordered to meet the so-called Running Intersection Property (RIP): for all i = 2, . . . , r
there exists j, 1 ≤ j < i, such that

Ki ∩ (K1 ∪ · · · ∪ Ki−1) ⊆ Kj.

This offers us a possibility to define decomposable models using Definition 2 recursively.

Definition 5 (Decomposable basic assignments). Wesay that a basic assignmentm is decomposable if it factoriseswith respect

to a decomposable graph in the following sense (let K1, K2, . . . , Kr be cliques of the considered decomposable graph ordered

so that theymeet RIP): for all i = 2, . . . , r themarginalm↓K1∪···∪Ki factoriseswith respect to the couple (K1∪· · ·∪Ki−1, Ki).

By repeated application of Proposition 4 one can immediately see that a decomposable model can easily be represented

by a system of its marginals (the simple proof is in [13]).

Proposition 6 (Composition of decomposablemodels). Consider a decomposable graphwith cliques K1, . . . , Kr . If this ordering

meets RIP then m is decomposable with respect to the graph in question if and only if

m = m↓K1 � m↓K2 � · · · � m↓Kr−1 � m↓Kr .

Example: The graph in Fig. 2(c) has four cliques: {1, 2, 4}, {2, 3, 4}, {3, 4, 5}, and {3, 5, 6}. It is not difficult to verify that

this ordering meets the conditions of the running intersection property, which means that the graph is decomposable, and

basic assignment m is decomposable with this graph if and only if

m = m↓{1,2,4} � m↓{2,3,4} � m↓{3,4,5} � m↓{3,5,6},
or, using another RIP ordering,

m = m↓{2,3,4} � m↓{3,4,5} � m↓{1,2,4} � m↓{3,5,6},
or,

m = m↓{3,5,6} � m↓{3,4,5} � m↓{2,3,4} � m↓{1,2,4}.
Let us stress that it canbe shown that all three of these conditions are equivalent because all three cliqueorderings considered

here do meet RIP. Notice the characteristic property expressed by RIP: whenever an operator of composition is realised the

composition is computed, in fact, for two three-dimensional marginals.

Proposition 6 says that a basic assignment is decomposable if and only if it can be composed froma systemof itsmarginals

(the structure of the system must correspond to cliques of a decomposable graph). We can also ask the opposite question:

having a system of low-dimensional basic assignmentsm1,m2, . . . ,mr defined onXK1 ,XK2 , . . . ,XKr , respectively, what are

the properties of the multidimensional basic assignment m1 � m2 � · · · � mr? The answer to this question, which follows

from the following assertion proved in [16], is that if K1, K2, . . . , Kr meet RIP then m1 � m2 � · · · � mr is decomposable.

Proposition 7. For any sequence m1,m2, . . . ,mr of basic assignments defined onXK1 ,XK2 , . . . ,XKr , respectively, the sequence

m̄1, m̄2, . . . , m̄r computed by the following process

m̄1 = m1,

m̄2 = m̄
↓K2∩K1
1 � m2,

m̄3 = (m̄1 � m̄2)
↓K3∩(K1∪K2) � m3,

...

m̄r = (m̄1 � · · · � m̄r−1)
↓Kr∩(K1∪···Kr−1) � mr,

has the following properties: m1 � · · · � mr = m̄1 � · · · � m̄r ; each m̄i is defined on XKi and is marginal to m1 � · · · � mr.
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Remark 6. It is important to realise that if K1, K2, . . . , Kr meet RIP, then each Ki ∩ (K1 ∪ · · · ∪ Ki−1) is a subset of some Kj

(j < i) and therefore

(m̄1 � · · · � m̄i−1)
↓Ki∩(K1∪···∪Ki−1) = m̄

↓Ki∩Kj
j .

Therefore, from the computational point of view, the process described in Proposition 7 is simple for systems of low-

dimensional assignments corresponding to decomposable graphs, and can be performed locally (see the next section).

Remark 7. Notice that, thanks to Proposition 3, one can deduce that for a decomposable basic assignment m it is possible

to read the system of conditional independence relations valid form exactly in the same way as it is done for decomposable

probabilistic measures: If G = (N, E) is a decomposable graph with respect to which decomposable basic assignment m

factorises, and if nodes i and j are separated in G by setM then

i⊥⊥j |M [m].
However, let us stress once more: this possibility holds only if one accepts Definition 3.

5. Local computations

By local computations we understand a process based on the ideas published in the famous paper by Lauritzen and

Spiegelhalter [19]: The considered probabilistic model (Bayesian network) is first converted into a decomposable model

which is subsequently used to compute the required conditional probabilities. What is important in the latter part of the

process is the fact thatwhen computing the required conditional probability, one performs computations only on the system

of marginal distributions defining the decomposable model. During the computational process one does not need to store

more data than what is necessary to store for the decomposable model.

In this paper we do not have an ambition to solve this problem in full generality. We just discuss a way that will enable

us to answer a question like: What is a belief for values of variable Xj if we know that variable Xi has a value a? As said above,

in probability theory the answer is given by conditional probability distribution π(Xj|Xi = a). Let us study a possibility to

obtain this conditional probability distributionwith the help of the probabilistic operator of composition (see the beginning

of Section 1.3).

Define a degenerated one-dimensional probability distribution κ|i;a as a distribution of variable Xi achieving probability

1 for value Xi = a, i.e.,

κ|i;a(Xi = x) =
⎧⎨
⎩ 1 if x = a,

0 otherwise.

Now, compute (κ|i;a � π)↓{j} for a probability distribution π of variables XK with i, j ∈ K:

(κ|i;a � π)↓{j}(y)= ((κ|i;a � π)↓{j,i})↓{j}(y) = (κ|i;a � π↓{j,i})↓{j}(y)

= ∑
x∈Xi

κ|i;a(x) · π↓{j,i}(y, x)
π↓{i}(x)

= π↓{j,i}(y, a)
π↓{i}(a)

= π↓{j,i}(y|a).

This fact that the conditional probability π↓{j,i}(y|a) can be expressed with the help of the operator of composition,

inspired us to also introduce a similar construction for basic assignments. Define a degenerated basic assignment m|i;a
on Xi with only one focal element m|i;a({a}) = 1. What is the basic assignment (m|i;a � m)↓{j}? The answer is given by

Proposition 1: it is that basic assignment which arises from m by changing its marginal for variable Xi so that it is equal to

m|i;a. In other words, it describes the relationships among all variables from XN which are encoded inmwhenwe know that

Xi takes the value a. Therefore, in a sense it yields an answer to the question raised above.

In the rest of this sectionwewill show that having abelief networkm, it is possible to computem|i;a�mbya computational

process following the ideas of Lauritzen and Spiegelhalter.

5.1. Conversion of a BN into decomposable basic assignment

Theprocess realizing this stepcanbedirectly takenover fromprobability theory [9].Westart assuming that theconsidered

basic assignment m is given in a form of a belief network, i.e.,

m = m↓fam(1) � m↓fam(2) � · · · � m↓fam(|N|),

for an acyclic graphG = (N, E), and the ordering 1, 2, . . . , |N| is such that parents are before their children. Then undirected

graph G = (N, Ē), where
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Ē =
{

{i, j} ∈
(
N

2

)
: ∃k ∈ N {i, j} ⊆ fam(k)

}
,

is a so-called moral graph from which one can get the necessary decomposable graph G = (V, F) (which will be uniquely

specified by a system of its cliques C1, C2, . . . , Cr) by any heuristic approach used for moral graph triangulation [4] (it is

known that the process of looking for an optimal triangulated graph is a NP hard problem). When one realises that there

must exist an ordering (let it be the ordering C1, C2, . . . , Cr) of the cliques meeting RIP and simultaneously

i ∈ pa(j) �⇒ f (i) ≤ f (j),

where f (k) = min(� : k ∈ C�), then it is an easy task to compute the necessary marginal ba’sm↓C1 , . . . ,m↓Cr .

Example: Consider a basic assignment m that is a BN with the graph in Fig. 2(a). It means that

m = m↓{1} � m↓{2} � m↓{2,3} � m↓{1,2,4} � m↓{4,5} � m↓{3,5,6},

or equivalently it means that the basic assignment m can be represented with the help of two one-dimensional (m1,m2),

two two-dimensional (m23,m45), and two three-dimensional (m124,m356) basic assignments

m = m1 � m2 � m23 � m124 � m45 � m356.

Notice that here we do not assume that, say,m124 is a marginal of m.

The corresponding moral graph is in Fig. 2(b), and a possible triangulated (decomposable) graph is in Fig. 2(c). So,

the corresponding decomposable model is represented with the help of four three-dimensional marginals, which can be

computed in the following way:

m↓{1,2,4} = m1 � m2 � m124,

m↓{2,3,4} = m↓{2,4} � m23,

m↓{3,4,5} = m↓{3,4} � m45,

m↓{3,5,6} = m↓{3,5} � m356.

5.2. Computation of conditional basic assignment

In comparison with the previous step, this computational process is much more complex. We have to show that having

a decomposable basic assignment m = m↓C1 � · · · � m↓Cr one can compute (m|i;a � m)↓{j} locally.
For this, we take advantage of the famous fact (an immediate consequence of the existence of a join tree, see [1]) that if

C1, C2, . . . , Cr can be ordered to meet RIP, then for each k ∈ {1, 2, . . . , r} there exists an ordering meeting RIP for which Ck
is the first one. So consider any Ck for which i ∈ Ck , and find the ordering meeting RIP which starts with Ck . Without loss of

generality let it be C1, C2, . . . , Cr (so, i ∈ C1).

Considering basic assignment m decomposable with respect to the graph with cliques C1, C2, . . . , Cr , our goal is to

compute

(m|i;a � m)↓{j} =
(
m|i;a � (m↓C1 � m↓C2 � · · · � m↓Cr )

)↓{j}
.

However, at this moment we have to assume that m↓{i}({a}) is positive. Under this assumption we can apply Proposition 2

(r − 1) times getting

m|i;a � (m↓C1 � m↓C2 � · · · � m↓Cr ) = m|i;a � (m↓C1 � m↓C2 � · · · � m↓Cr−1) � m↓Cr

= · · · = m|i;a � m↓C1 � m↓C2 � · · · � m↓Cr ,

from which the following computationally local process (see Remark 6)

m̄1 = m|i;a � m↓C1 ,

m̄2 = m̄
↓C2∩C1
1 � m↓C2 ,

m̄3 = (m̄1 � m̄2)
↓C3∩(C1∪C2) � m↓C3 ,

...

m̄r = (m̄1 � · · · � m̄r−1)
↓Cr∩(C1∪···Cr−1) � m↓Cr ,
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Table 3

Focal elements of basic assignments m1,m2,m3.

m1({(a1, a2), (a1, ā2)}) = 1
4

m2({(a2, a3)}) = 1
4

m3({(a3, a4)}) = 1
2

m1({(a1, ā2), (ā1, ā2)}) = 1
4

m2({(ā2, a3)}) = 1
4

m3({(a3, a4), (ā3, ā4)}) = 1
4

m1({(a1, a2), (a1, ā2), (ā1, a2)}) = 1
2

m2({(a2, ā3), (ā2, ā3)}) = 1
4

m3({(ā3, a4), (ā3, ā4)}) = 1
4

m2({(a2, ā3), (ā2, a3)}) = 1
4

yields a sequence m̄1, . . . , m̄r , such that m|i;a � m = m̄1 � · · · � m̄r , and each m̄k = (m|i;a � m)↓Ck . Therefore, to compute

(m|i;a � m)↓{j} it is enough to find any k such that j ∈ Ck because in this case (m|i;a � m)↓{j} = m̄
↓{j}
k .

Example: Consider a 4-dimensional binary space X1 × X2 × X3 × X4 with Xi = {ai, āi}, and three two-dimensional basic

assignmentswhose all focal elements are given inTable3. Let the goal be to compute (m1�m2�m3)
↓{4} under the assumption

that X1 = a1, i.e., we want to evaluate

(m|1;a1 � (m1 � m2 � m3))
↓{4}.

Since X1 is among the arguments ofm1, and {a1} is a focal element of (m1�m2�m3)
↓{4}, we can apply the above-introduced

procedure (repeated application of Proposition 2) getting that

(m|1;a1 � (m1 � m2 � m3))
↓{4} = (m|1;a1 � m1 � m2 � m3)

↓{4}.

So, the task remains to apply the process described in Proposition 7. We get that m|1;a1 � m1 has only one focal element

({(a1, a2), (a1, ā2)}), and therefore the same holds also for (m|1;a1 � m1)
↓{2}: (m|1;a1 � m1)

↓{2}(X2) = 1.

From this we immediately get (m|1;a1 � m1)
↓{2} � m2 with two focal elements

((m|1;a1 � m1)
↓{2} � m2)(X2 × {ā3}) = 1

2

((m|1;a1 � m1)
↓{2} � m2)(X2 × X3) = 1

2
,

and therefore also its marginal ((m|1;a1 �m1)
↓{2} �m2)

↓{3}, which is necessary for the computation of the next (already the

last) composition, has two focal elements: {ā3} and X3. Evaluating this third composition we get that ((m|1;a1 � m1)
↓{2} �

m2)
↓{3} � m3 has again two focal elements {(a3, a4), (ā3, ā4)} and {(ā3, a4), (ā3, ā4)}; for each of them the computed

composed basic assignment equals 1
2
. Marginalising the last two-dimensional basic assignment we get the desired result:

(m|1;a1 � (m1 � m2 � m3))
↓{4} = (((m|1;a1 � m1)

↓{2} � m2)
↓{3} � m3)

↓{4}

has only one focal element, namely

(m|1;a1 � (m1 � m2 � m3))
↓{4})({ā4}) = 1.

Remark 8. If the goal is to compute a basic assignment for variable Xd under the condition that Xe = a and simultaneously

Xf = b, then one can first compute the decomposable model m|e;a � m = m̄1 � m̄2 � · · · � m̄r by the process described

above, and afterwards

m|f ;b � (m|e;a � m) = m|f ;b � (m̄1 � m̄2 � · · · � m̄r)

in an analogous way finding a new permutation of K1, K2, . . . , Kr meeting RIP such that the first index set contains f . This

time, naturally, we have to assume that m↓{f }({b}) > 0, too.

6. Conclusions

Inspired by Graphical Markov Models in probability theory, we introduced decomposable models in Dempster–Shafer

theory of evidence. For this we used two recently introduced concepts: operator of composition and factorisation.

Based on a factorisation lemma, it is possible to deduce that the introduced decomposable models possess the same

conditional independence structure as their probabilistic counterparts; it can be read from the respective graphs following

exactly the same rules as in the probabilistic case. This, however, holds only under the assumption that we accept the

definition of conditional independence as presented here in Definition 3. Recall that our papers are not the only ones

showing evidence in favour of this definition. As it was already presented in [3], Studený showed that the concept of

conditional independence based on application of the conjunctive combination rule is not consistent with marginalisation.
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He found two consistent basic assignments for which there does not exist a common extension manifesting the respective

conditional independence (for more details and Studený’s example see [3]). Let us stress here once more that Definition 3

does not suffer from this insufficiency.

Nevertheless, it was not the main goal of this paper to support the new concept of conditional independence. Here we

dealt with the question of whether the ideas of local computations can also be applied to computations in Dempster–Shafer

theory of evidence. At this time we have, unfortunately, obtained only a partial answer. The results presented in the last

section show that we are able to theoretically support local computations in the cases when the associativity of the operator

of composition holds. We did it under the additional assumption thatm↓e({a}) > 0, i.e., under the assumption that

Bel(Xe = a) = m↓e({a}) > 0.

From the point of view of real-world application, we would prefer if the designed computational process were applicable

under a weaker condition, for example, in a case where

Pl(Xe = a) = ∑
A⊆Xe:a∈A

m↓e(A) > 0.

However, aswe showed in Example in Section 2, this condition does not guarantee the necessary associativity of the operator

of composition.

In this paper we studied the possibility to compute a posterior basic assignment under a condition that a value of a

variable is given. But it should be mentioned that the described procedure is applicable also in case one wants to compute

conditional basic assignment like, e.g., that studied by Shenoy in [22]. In fact it can be used for computation of any basic

assignment that can be expressed as a composition of a specific (perhaps one-dimensional) assignment with a multidimen-

sional decomposable model.
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